
 Nov 15, 2013

Copyright © 2004-2013 Experture and Robert Frances Group, all rights reserved

46 Kent Hills Lane, Wilton, CT. 06897; (203) 429 8951;

 http://www.rfgonline.com/; Contact: inquiry@rfgonline.com

The Evolution of NoSQL – Part 1

RFG POV: In the ever-evolving world of enterprise IT, choice is generally considered a good
thing – albeit having too many choices can create confusion and uncertainty. For those
application owners, database administrators and IT directors who pine for the good old days
when one could count the number of enterprise-class databases (DBs) on one or two hands, the
relational-database-solves-all-our-data-management-requirements days are long gone. NoSQL
databases in all their varieties are not going away and IT executives will need to understand the
alternatives and select a minimum set that best meets corporate needs.

Thanks to the explosion of Big Data throughout every industry sector and requirements

for real-time, predictive and other forms of now indispensable transactions and analytics

to drive revenue and business outcomes, today there are more than 50 DBs in a variety of

categories that address different aspects of the Big Data conundrum. Welcome to the new

normal world of NoSQL – or, Not only Structured Query Language – a term used to

designate databases which differ from classic relational databases in some way.

In August, more than 20 NoSQL solution providers and 100-plus experts gathered at the

San Jose Convention Center for 2013’s version of NoSQL Now! Exhibitors and speakers

included familiar names such as Oracle along with a score of venture-backed NoSQL

solution providers eager to disseminate their message and demonstrate that the time has

come for enterprises of every ilk to adopt innovative database solutions to tackle Big

Data challenges. More than a dozen sponsors were interviewed at the event and profiled

in this research note.

The Evolution of NoSQL

In the beginning, there was SQL (structured query language). Developed by IBM

computer scientists in the 1970s as a special-purpose programming language, SQL was

designed to manage data held within a relational database management system

(RDBMS). Originally based on relational algebra and tuple relational calculus, SQL

consists of a data definition language and a data manipulation language. Subsequently,

SQL has become the most widely used database language largely due to the popularity of

IBM, Microsoft and Oracle RDBMSs.

NoSQL DBs started to emerge and become enterprise-relevant in the wake of the open-

source movement of the late 1990s. Aided by the movement toward Internet-enabled

online transaction processing (OLTP), distributed processing leveraging the cloud and the

inherent limitations of relational DBs, including lack of horizontal scale, flexibility,

availability, findability and high cost, use of NoSQL databases has mushroomed.

Amazon’s instantiation of DynamoDB is considered by many as the first large-scale, or

web-scale, production NoSQL database. To quote author Joe Brockmeier, who now

works for Red Hat, “Amazon’s Dynamo paper is the paper that launched a thousand

http://nosql2013.dataversity.net/
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/NoSQL#History
http://readwrite.com/2012/01/18/amazon-enters-the-nosql-market#awesm=~ohkbSPAZKLFDwe

 Nov 15, 2013

Copyright © 2004-2013 Experture and Robert Frances Group, all rights reserved

46 Kent Hills Lane, Wilton, CT. 06897; (203) 429 8951;

 http://www.rfgonline.com/; Contact: inquiry@rfgonline.com

NoSQL databases.” Brockmeier suggests that the “paper inspired, at least in part, Apache

Cassandra, Voldemort, Riak and other projects.”

According to Amazon CTO Werner Vogels, who co-authored the paper entitled Dynamo:

Amazon’s Highly Available Key-value Store, “DynamoDB is based on the principles of

Dynamo, a progenitor of NoSQL, and brings the power of the cloud to the NoSQL

database world. It offers customers high availability, reliability, and incremental

scalability, with no limits on dataset size or request throughput for a given table.”

DynamoDB is the primary DB behind the wildly successful Amazon Web Services

business and its shopping cart service that handles over 3 million “checkouts” a day

during the peak shopping season.

As a result of the Amazon DynamoDB and other enterprise-class NoSQL database proof

points, it is not uncommon for an enterprise IT organization to support multiple NoSQL

DBs alongside legacy RDBMSs. Indeed, there are single applications that often deploy

two or more NoSQL solutions, e.g., pairing a document-oriented DB with a graph DB for

an analytics solution. Perhaps the primary reason for the proliferation of NoSQL DBs is

the realization that one database design cannot possibly meet all the requirements of most

modern-day enterprises – regardless of the company size or the industry.

The CAP Theorem

In 2000, Berkeley, CA, researcher Eric Brewer published his now foundational CAP

Theorem (consistency, availability and partition tolerance) which states that it is

impossible for a distributed computer system to simultaneously provide all three CAP

guarantees. In May 2012, Brewer clarified some of his positions on the oft-used “two out

of three” concept.

 Consistency (all nodes see the same data at the same time)

 Availability (a guarantee that every request receives a response about whether it

was successful or failed)

 Partition Tolerance (the system continues to operate despite arbitrary message

loss or failure of part of the system).

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem

 Nov 15, 2013

Copyright © 2004-2013 Experture and Robert Frances Group, all rights reserved

46 Kent Hills Lane, Wilton, CT. 06897; (203) 429 8951;

 http://www.rfgonline.com/; Contact: inquiry@rfgonline.com

According to Peter Mell, a senior computer scientist for the National Institute of

Standards and Technology, “In the database world, they can give you perfect

consistency, but that limits your availability or scalability. It’s interesting, you are

actually allowed to relax the consistency just a little bit, not a lot, to achieve greater

scalability. Well, the Big Data vendors took this to a whole new extreme. They just went

to the other side of the Venn diagram, and they said we are going to offer amazing

availability or scalability, knowing that the data is going to be consistent eventually,

usually. That was great for many things.”

ACID vs. BASE

In most organizations, upwards of 80% of Big Data is in the form of "unstructured" text

or content, including documents, emails, images, instant messages, video and voice clips.

RDBMSs were designed to manage "structured" data in manageable fields, rows and

columns such as dates, social security numbers, addresses and transaction amounts.

ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantees

database transactions are processed reliably and is a necessity for financial transactions

and other applications where precision is a requirement.

Conversely, most NoSQL DBs tout their schema-less capability, which ostensibly allows

for the ingestion of unstructured data without conforming to a traditional RDBMS data

format or structure. This works especially well for documents and metadata associated

with a variety of unstructured data types as managing text-based objects is not considered

a transaction in the traditional sense. BASE (basically available, soft state, eventually

consistent) implies the DB will, at some point, classify and index the content to improve

the findability of data or information contained in the text or the object.

http://breakinggov.com/2012/11/12/big-data-tradeoffs-what-agencies-need-to-know-nists-peter-me/
http://en.wikipedia.org/wiki/ACID
http://www.sadalage.com/2010/10/schema-less-databases-and-its.html

 Nov 15, 2013

Copyright © 2004-2013 Experture and Robert Frances Group, all rights reserved

46 Kent Hills Lane, Wilton, CT. 06897; (203) 429 8951;

 http://www.rfgonline.com/; Contact: inquiry@rfgonline.com

Increasingly, a number of database cognoscenti believe NoSQL solutions will or have

overcome the "ACID test" as availability is said to trump consistency – especially in the

vast majority of online transaction use cases. Even Eric Brewer argued recently that bank

transactions are BASE not ACID because availability = $.

Conclusion

No one type of NoSQL database neither satisfies all business requirements, nor is it

expected that one will any time soon. While the market is still immature and the options

are myriad, IT executives cannot wait before selecting the right NoSQL platforms. This

research report and the next one will cover the evolution of NoSQL. Three more will

follow that cover 21 NoSQL innovators worth exploring.

RFG POV: The NoSQL wave of database technology is immature and expanding and a
myriad of options exist to confound IT executives and slow down decision-making. IT
executives and data architects should understand the variety of options and then map
them to current and future business and technical requirements for each application type
where a NoSQL database might apply. As pointed out in the report, no one solution may
meet all the requirements so IT executives should be prepared to adopt and standardize
on a minimum set of multiple database solutions.

Additional relevant research is available. Interested readers should contact Client

Services to arrange further discussion or interview with Mr. Gary MacFadden, Principal

Research Analyst.

http://highscalability.com/blog/2013/5/1/myth-eric-brewer-on-why-banks-are-base-not-acid-availability.html
http://highscalability.com/blog/2013/5/1/myth-eric-brewer-on-why-banks-are-base-not-acid-availability.html

